Preparation of core-shell magnetic molecularly imprinted polymer nanoparticles for recognition of bovine hemoglobin.
نویسندگان
چکیده
Imprinting nanoparticles: Core-shell bovine hemoglobin (BHb) imprinted magnetic nanoparticles (MNPs) with a mean diameter of 210 nm have been synthesized for the first time. The imprinted magnetic nanoparticles could easily reach the adsorption equilibrium and magnetic separation under an external magnetic field, thus avoiding problems related to the bulk polymer. In this work, the core-shell bovine hemoglobin (BHb) imprinted magnetic nanoparticles (MNPs) with a mean diameter of 210 nm were synthesized for the first time. In this protocol, the initial step involved co-precipitation of Fe(2+) and Fe(3+) in an ammonia solution. Silica was then coated on the Fe(3)O(4) nanoparticles using a sol-gel method to obtain silica shell magnetic nanoparticles. Subsequently, 3-aminophenylboronic acid (APBA), which is the functional and cross-linking monomer, and poly(APBA) thin films were coated onto the silica-modified Fe(3)O(4) surface through oxidation with ammonium persulfate in an aqueous solution in the presence or absence of protein. The morphology, adsorption, and recognition properties of the magnetic molecularly imprinted nanomaterial were investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). Rebinding experiments were carried out to establish the equilibrium time and to determine the specific binding capacity and selective recognition. The protein adsorption results showed that poly(APBA) MIPs-coated magnetic nanoparticles have high adsorption capacity for template protein BHb and comparatively low non-specific adsorption. The imprinted magnetic nanoparticles could easily reach the adsorption equilibrium and magnetic separation under an external magnetic field, thus avoiding problems related to the bulk polymer. We believe that the imprinted polymer-coated magnetic nanoparticles can be one of the most promising candidates for various applications, which include chemical and biochemical separation, cell sorting, recognition elements in biosensors, and drug delivery.
منابع مشابه
Fabrication of a Selective and Sensitive Electrochemical Sensor Modified with Magnetic Molecularly Imprinted Polymer for Amoxicillin
A modified electrochemical sensor for the determination of amoxicillin (AMX) was reported in this paper. The magnetic molecularly imprinted polymer (MMIP) were suspended in AMX solution and then collected on the surface of a magnetic carbon paste electrode (CPE) via a permanent magnet, situated within the carbon paste electrode and then the voltammetry signals were recorded. It was confirmed th...
متن کاملسنتز نانو پلیمر قالب مولکولی سطحی جاذب کلسترول بر پایه ذرات آهن مغناطیسی- سیلیس و بررسی ویژگیهای عملکردی
Background & Aims: Nowadays usage of molecularly imprinted polymers which act as artificial antibodies and separate target molecules from biological environments is a novel approach. Cholesterol is one of the major risk factors of cardiovascular diseases and its precise determination is crucial. In this research, a molecularly imprinted polymer by means of Fe3O4 nanoparticles coated with s...
متن کاملPreparation and recognition properties of bovine hemoglobin magnetic molecularly imprinted polymers.
A simple method for the preparation of core-shell micro/nanostructured magnetic molecularly imprinted polymers (MIPs) for protein recognition is described. Magnetic MIPs were synthesized by copolymering gamma-aminopropyltrimethoxysilane and tetraethyl orthosilicate at the surface of Fe(3)O(4) nanospheres, which were directly covalently bound with template molecule, bovine hemoglobin (BHb), thro...
متن کاملSeparation of STIGMA STEROL using magnetic molecularly imprinted nanopolymer fabricated by sol-gel method
Background & Aims: Magnetically molecularly imprinted polymers (MMIPs) are assumed as kind of sorbent polymers ‎which can separate or determine bioactive compounds from environment fast and specifically. ‎Magnetic properties, stability at various conditions (temperature , ionic strength and pH) and selective ‎function are among the advantages of these polymers in determin...
متن کاملMagnetic molecularly imprinted polymer for aspirin recognition and controlled release.
Core-shell structural magnetic molecularly imprinted polymers (magnetic MIPs) with combined properties of molecular recognition and controlled release were prepared and characterized. Magnetic MIPs were synthesized by the co-polymerization of methacrylic acid (MAA) and trimethylolpropane trimethacrylate (TRIM) around aspirin (ASP) at the surface of double-bond-functionalized Fe(3)O(4) nanoparti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry, an Asian journal
دوره 4 2 شماره
صفحات -
تاریخ انتشار 2009